

Divisors and line bundles

X : smooth connected variety over $k = \overline{k}$

Weil divisors $\Rightarrow X$ integral with generic pt η

Def A prime divisor $Y \subseteq X$ is a closed integral subscheme w/ $\text{codim}_X Y = 1$

A (Weil) divisor $D = \sum n_i Y_i \in \text{Div}(X) := \bigoplus_{\substack{Y \subseteq X \\ \text{prime} \\ \text{Div}}} \mathbb{Z} Y$
effective if all $n_i \geq 0$

$Y \subseteq X$: prime divisor

X smooth $\Rightarrow \mathcal{O}_{X,Y}$ regular local ring of dim 1
i.e. a DVR w/ fraction field $K(X)$

\Rightarrow valuation $\text{ord}_Y: K(X)^* \rightarrow \mathbb{Z}$
 $f = u t^n \mapsto n$

for $u \in \mathcal{O}_{X,Y}^*$

$t \in \mathcal{O}_{X,Y}$

uniformizer
a.k.a. local
parameter

Def divisor of zeros and poles homomorphism

$\text{div}: K(X)^* \rightarrow \text{Div}(X)$

$f \mapsto \sum_{\substack{Y \subseteq X \\ \text{prime}}} \text{ord}_Y(f) Y$

Divisors of the form $\text{div}(f)$ are called principal.

D, D' are linearly equivalent if $\exists f$ s.t. $D - D' = \text{div}(f)$

The divisor class group is

$$\text{Cl}(X) = \text{Div}(X) / \text{im}(\text{div})$$

Prop A noetherian domain. TFAE:

(1) A is a UFD

(2) $\text{Spec}(A)$ is normal and $\text{Cl}(\text{Spec}(A)) = 0$

(3) every prime ideal of ht = 1 is principal

Fact if R regular local ring, then R is a UFD

→ for us $\mathcal{K}(X)$ is a global/geometric object
Cartier divisors (in general, it also contains arithmetic information)

\mathcal{K}_X^{u} : constant sheaf on X valued in $\mathcal{K}(X)$ \mathcal{O}_X -algebra
 \mathcal{K}_X^* : _____ " _____ $\mathcal{K}^*(X)$
sheaf of abelian groups

consider s.e.s. (of abelian groups written multiplicatively)

$$1 \rightarrow \mathcal{O}_X^* \rightarrow \mathcal{K}_X^* \rightarrow \mathcal{K}_X^*/\mathcal{O}_X^* \rightarrow 1$$

Def A Cartier divisor $\in \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$
 \Downarrow
 $\{ (U_i, f_i) \mid \begin{array}{l} X = \bigcup U_i \\ f_i \in \mathcal{K}(X)^* \\ \text{s.t. } f_i/f_j \in \mathcal{O}_X(U_{ij})^*/\sim \end{array} \}$

Cartier divisors in the image of

$$\mathcal{K}(X)^* = \Gamma(X, \mathcal{K}_X^*) \rightarrow \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$$

are called principal

$$\# \text{ prime } \text{ord}_Y |_{\mathcal{O}_X^*} = 0$$

$$\Rightarrow \mathcal{K}(X)^* \rightarrow \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$$

$$\text{ord}_Y \searrow \mathbb{Z} \swarrow \text{ord}_Y$$

$$\begin{array}{ccc} \rightsquigarrow & \mathcal{K}(X)^* & \rightarrow \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \\ & \searrow & \downarrow \text{div} \\ & & \text{Div}(X) \end{array}$$

Prop: X : smooth connected variety

$$\text{div} : \Gamma(X, \mathcal{K}_X^* / \mathcal{O}_X^*) \rightarrow \text{Div}(X)$$

is an isomorphism.

Proof $\forall x \in X \quad \mathcal{O}_{X,x}$ regular local domain \Rightarrow UFD

$\forall Y \subseteq X \quad Y|_{\text{Spec}(\mathcal{O}_{X,x})} \leftrightarrow$ cut out by a height 1 prime ideal

$$\mathcal{J}_x = (f_x^Y)$$

$\Rightarrow \exists X = \bigcup_i U_i^Y$ open cover and $f_i^Y \in \mathcal{O}_X(U_i^Y)$ s.t.

$$Y|_{U_i^Y} = V(f_i^Y)$$

the map

$$\begin{aligned} \text{Div}(X) &\longrightarrow \Gamma(X, \mathcal{K}_X^* / \mathcal{O}_X^*) \\ Y &\mapsto (U_i^Y, f_i^Y) \end{aligned}$$

yields an inverse to div . \square

Exerc: $\text{div}(U_i, f_i)$ is effective iff $f_i \in \mathcal{O}_{U_i}^*$

Line bundles

Def A line bundle (a.k.a invertible sheaf) \mathcal{L} on X is a sheaf of \mathcal{O}_X -modules which is Zariski locally isomorphic to \mathcal{O}_X . i.e. \exists open cover $X = \bigcup_i U_i$ and isomorphisms $\mathcal{O}_{U_i} \cong \mathcal{L}|_{U_i}$

$$\begin{aligned} \mathcal{O}_X(-) : \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*) &\rightarrow \left\{ (\mathcal{L}, s) \mid \substack{\mathcal{L} \text{ line bundle} \\ s \in \mathcal{L}|_U} \right\} / \cong \\ D = (U_i, f_i) &\mapsto \left(\mathcal{O}_X(D)(U_i) = f_i^{-1}\mathcal{O}_X \subseteq \mathcal{K}_X, s_D = 1 \right) \\ &= \left\{ f \in K(X) \mid \text{div}(f) + D \geq 0 \right\} \cup \{0\}, \end{aligned}$$

Prop $(\mathcal{O}_X(-), s_D)$ is an isomorphism and induces an isomorphism

$$\begin{matrix} \text{Coh}(X) \\ \text{cl}(X) \end{matrix} \longrightarrow \text{Pic}(X)$$

Proof Inverse construction:

$$\text{div}(\mathcal{L}, s) := (U_i, q_i(s))$$

for $X = \bigcup_i U_i$, $q_i : \mathcal{L}|_{U_i} \cong \mathcal{O}_{U_i}$ a trivialization.

□

Example $D = [0] - 2[\infty] \in \text{Div}(\mathbb{P}^1)$ $\mathbb{P}^1 = \text{Spec}(k[t]) \cup \text{Spec}(k[s])$
 what is the corresponding Cartier divisor

$$[0] \mid_{\text{Spec}(k[t])} = \text{Spec}(k[t]/(t))$$

$$[\infty] \mid_{\text{Spec}(k[s])} = \text{Spec}(k[s]/(s))$$

$$[0] \leftrightarrow (U_0, t) \quad (U_1, 1)$$

$$[\infty] \leftrightarrow (U_0, 1) \quad (U_1, s)$$

$$\Rightarrow D = (U_0, t), (U_1, s^{-2})$$

$$\mathcal{O}_X(D) \mid_{U_0} = t k[t], \mathcal{O}_X(D) \mid_{U_1} = s^{-2} k[s]$$

$$\mathcal{O}_X(D) \mid_{U_0} = t k[t^{\pm 1}] \xleftarrow{\cong} \mathcal{O}_X(D) \mid_{U_1} = s^{-2} k[s^{\pm 1}]$$

$$f(t) \mapsto \frac{s^{-2}}{t} f(s^{-1}) = s^{-1} f(s^{-1})$$

$$t^{-1} g(t^{-1}) = \frac{t}{s^2} g(s) \longleftrightarrow g(s)$$

$$\begin{array}{ccc} \{(2, s)\} / \cong & \cong & \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \cong \text{Div}(X) \\ \downarrow & \cong & \downarrow \cong \\ \text{Pic}(X) & \cong & \text{Coh}(\text{Cl}(X)) \cong \text{Cl}(X) \end{array}$$

\Rightarrow set of divisors linearly equivalent to D
 is $\Gamma(X, \mathcal{O}_X(D)) - \{0\} / k^*$
 [Hartshorne, II.7]

Linear systems

Def The complete linear system at a divisor D is

$$|D| = \Gamma(X, \mathcal{O}_X(D)) \setminus \{0\} / \mathbb{K}^* \cong \mathbb{P}(\Gamma(X, \mathcal{O}_X(D)))$$

the set of divisors which are linearly equivalent to D

A linear system at D is a linear subspace $\mathcal{S} \subseteq |D|$

A point $p \in X$ is a base point for $\mathcal{S} \subseteq |D|$ if $p \in \text{supp}(D') \nvdash D' \in \mathcal{S}$

Maps to \mathbb{P}^n

$\mathcal{O}(1)$ is the line bundle on \mathbb{P}^n w/ global sections $\Gamma(\mathbb{P}^n, \mathcal{O}(1)) = \mathbb{K}[x_0, \dots, x_n]$
Homogeneous of deg 1 linear forms

For all $X \xrightarrow{\pi} \mathbb{P}^n$ $\pi^* \mathcal{O}(1)$ is a line bundle which is globally generated by $\pi^* x_i$.

(Conversely:

Let $(\mathcal{L}, s_0, \dots, s_n)$ line bundle w/ globally gen. sections. on X

$$\begin{aligned} \xrightarrow{\sim} X &\xrightarrow{\pi} \mathbb{P}^n \\ p &\mapsto [s_0(p), \dots, s_n(p)] \end{aligned}$$

$$\text{s.t. } \pi^* \mathcal{O}(1) = \mathcal{L} \text{ and } \pi^* x_i = s_i$$

Thus

$$\{X \rightarrow \mathbb{P}^n\} = \{(Z, s_0, \dots, s_n) \mid \begin{array}{l} Z \text{ line bundle on } X \\ s_0, \dots, s_n \text{ globally} \\ \text{generating sections} \end{array}\} / \sim$$

$$= \{ s_1, s_0, \dots, s_n \mid \begin{array}{l} s \text{ linear system of dim } n \\ s_i \text{ global generator} \end{array} \}$$